
Chapter 4

Data wrangling

This chapter introduces basics of how to wrangle data in R. Wrangling skills will provide
an intellectual and practical foundation for working with modern data.

4.1 A grammar for data wrangling

In much the same way that ggplot2 presents a grammar for data graphics, the dplyr
package presents a grammar for data wrangling [234]. Hadley Wickham, one of the authors
of dplyr, has identified five verbs for working with data in a data frame:

select() take a subset of the columns (i.e., features, variables)

filter() take a subset of the rows (i.e., observations)

mutate() add or modify existing columns

arrange() sort the rows

summarize() aggregate the data across rows (e.g., group it according to some criteria)

Each of these functions takes a data frame as its first argument, and returns a data
frame. Thus, these five verbs can be used in conjunction with each other to provide a
powerful means to slice-and-dice a single table of data. As with any grammar, what these
verbs mean on their own is one thing, but being able to combine these verbs with nouns
(i.e., data frames) creates an infinite space for data wrangling. Mastery of these five verbs
can make the computation of most any descriptive statistic a breeze and facilitate further
analysis. Wickham’s approach is inspired by his desire to blur the boundaries between
R and the ubiquitous relational database querying syntax SQL. When we revisit SQL in
Chapter 12, we will see the close relationship between these two computing paradigms. A
related concept more popular in business settings is the OLAP (online analytical processing)
hypercube, which refers to the process by which multidimensional data is “sliced-and-diced.”

4.1.1 select() and filter()

The two simplest of the five verbs are filter() and select(), which allow you to return
only a subset of the rows or columns of a data frame, respectively. Generally, if we have a
data frame that consists of n rows and p columns, Figures 4.1 and 4.2 illustrate the e↵ect of
filtering this data frame based on a condition on one of the columns, and selecting a subset
of the columns, respectively.

63

Excerpt from "Modern Data Science with R" (2017)
https://mdsr-book.github.io/
copyright CRC Press

64 CHAPTER 4. DATA WRANGLING

n

p

m n

p

Figure 4.1: The filter() function. At left, a data frame that contains matching entries
in a certain column for only a subset of the rows. At right, the resulting data frame after
filtering.

n

p

n

` p

Figure 4.2: The select() function. At left, a data frame, from which we retrieve only a
few of the columns. At right, the resulting data frame after selecting those columns.

Specifically, we will demonstrate the use of these functions on the presidential data
frame (from the ggplot2 package), which contains p = 4 variables about the terms of n = 11
recent U.S. Presidents.

library(mdsr)
presidential

A tibble: 11 4
name start end party
<chr> <date> <date> <chr>

1 Eisenhower 1953-01-20 1961-01-20 Republican
2 Kennedy 1961-01-20 1963-11-22 Democratic
3 Johnson 1963-11-22 1969-01-20 Democratic
4 Nixon 1969-01-20 1974-08-09 Republican
5 Ford 1974-08-09 1977-01-20 Republican
6 Carter 1977-01-20 1981-01-20 Democratic
7 Reagan 1981-01-20 1989-01-20 Republican
8 Bush 1989-01-20 1993-01-20 Republican
9 Clinton 1993-01-20 2001-01-20 Democratic
10 Bush 2001-01-20 2009-01-20 Republican
11 Obama 2009-01-20 2017-01-20 Democratic

To retrieve only the names and party a�liations of these presidents, we would use
select(). The first argument to the select() function is the data frame, followed by an
arbitrarily long list of column names, separated by commas. Note that it is not necessary
to wrap the column names in quotation marks.

4.1. A GRAMMAR FOR DATA WRANGLING 65

select(presidential, name, party)

A tibble: 11 2
name party
<chr> <chr>

1 Eisenhower Republican
2 Kennedy Democratic
3 Johnson Democratic
4 Nixon Republican
5 Ford Republican
6 Carter Democratic
7 Reagan Republican
8 Bush Republican
9 Clinton Democratic
10 Bush Republican
11 Obama Democratic

Similarly, the first argument to filter() is a data frame, and subsequent arguments are
logical conditions that are evaluated on any involved columns. Thus, if we want to retrieve
only those rows that pertain to Republican presidents, we need to specify that the value of
the party variable is equal to Republican.

filter(presidential, party == "Republican")

A tibble: 6 4
name start end party
<chr> <date> <date> <chr>

1 Eisenhower 1953-01-20 1961-01-20 Republican
2 Nixon 1969-01-20 1974-08-09 Republican
3 Ford 1974-08-09 1977-01-20 Republican
4 Reagan 1981-01-20 1989-01-20 Republican
5 Bush 1989-01-20 1993-01-20 Republican
6 Bush 2001-01-20 2009-01-20 Republican

Note that the == is a test for equality. If we were to use only a single equal sign here,
we would be asserting that the value of party was Republican. This would cause all of the
rows of presidential to be returned, since we would have overwritten the actual values of
the party variable. Note also the quotation marks around Republican are necessary here,
since Republican is a literal value, and not a variable name.

Naturally, combining the filter() and select() commands enables one to drill down to
very specific pieces of information. For example, we can find which Democratic presidents
served since Watergate.

select(filter(presidential, start > 1973 & party == "Democratic"), name)

A tibble: 3 1
name
<chr>

1 Carter
2 Clinton
3 Obama

66 CHAPTER 4. DATA WRANGLING

n

p

n

p+ 1

Figure 4.3: The mutate() function. At left, a data frame. At right, the resulting data frame
after adding a new column.

In the syntax demonstrated above, the filter() operation is nested inside the select()
operation. As noted above, each of the five verbs takes and returns a data frame, which
makes this type of nesting possible. Shortly, we will see how these verbs can be chained
together to make rather long expressions that can become very di�cult to read. Instead, we
recommend the use of the %>% (pipe) operator. Pipe-forwarding is an alternative to nesting
that yields code that can be easily read from top to bottom. With the pipe, we can write
the same expression as above in this more readable syntax.

presidential %>%
filter(start > 1973 & party == "Democratic") %>%
select(name)

A tibble: 3 1
name
<chr>

1 Carter
2 Clinton
3 Obama

This expression is called a pipeline. Notice how the expression

dataframe %>% filter(condition)

is equivalent to filter(dataframe, condition). In later examples we will see how this
operator can make our code more readable and e�cient, particularly for complex operations
on large data sets.

4.1.2 mutate() and rename()

Frequently, in the process of conducting our analysis, we will create, re-define, and rename
some of our variables. The functions mutate() and rename() provide these capabilities. A
graphical illustration of the mutate() operation is shown in Figure 4.3.

While we have the raw data on when each of these presidents took and relinquished
o�ce, we don’t actually have a numeric variable giving the length of each president’s term.
Of course, we can derive this information from the dates given, and add the result as a
new column to our data frame. This date arithmetic is made easier through the use of the
lubridate package, which we use to compute the number of exact years (eyears(1)())
that elapsed since during the interval() from the start until the end of each president’s
term.

4.1. A GRAMMAR FOR DATA WRANGLING 67

In this situation, it is generally considered good style to create a new object rather
than clobbering the one that comes from an external source. To preserve the existing
presidential data frame, we save the result of mutate() as a new object called mypresidents.

library(lubridate)
mypresidents <- presidential %>%
mutate(term.length = interval(start, end) / eyears(1))

mypresidents

A tibble: 11 5
name start end party term.length
<chr> <date> <date> <chr> <dbl>

1 Eisenhower 1953-01-20 1961-01-20 Republican 8.01
2 Kennedy 1961-01-20 1963-11-22 Democratic 2.84
3 Johnson 1963-11-22 1969-01-20 Democratic 5.17
4 Nixon 1969-01-20 1974-08-09 Republican 5.55
5 Ford 1974-08-09 1977-01-20 Republican 2.45
6 Carter 1977-01-20 1981-01-20 Democratic 4.00
7 Reagan 1981-01-20 1989-01-20 Republican 8.01
8 Bush 1989-01-20 1993-01-20 Republican 4.00
9 Clinton 1993-01-20 2001-01-20 Democratic 8.01
10 Bush 2001-01-20 2009-01-20 Republican 8.01
11 Obama 2009-01-20 2017-01-20 Democratic 8.01

The mutate() function can also be used to modify the data in an existing column.
Suppose that we wanted to add to our data frame a variable containing the year in which
each president was elected. Our first näıve attempt is to assume that every president was
elected in the year before he took o�ce. Note that mutate() returns a data frame, so if we
want to modify our existing data frame, we need to overwrite it with the results.

mypresidents <- mypresidents %>% mutate(elected = year(start) - 1)
mypresidents

A tibble: 11 6
name start end party term.length elected
<chr> <date> <date> <chr> <dbl> <dbl>

1 Eisenhower 1953-01-20 1961-01-20 Republican 8.01 1952
2 Kennedy 1961-01-20 1963-11-22 Democratic 2.84 1960
3 Johnson 1963-11-22 1969-01-20 Democratic 5.17 1962
4 Nixon 1969-01-20 1974-08-09 Republican 5.55 1968
5 Ford 1974-08-09 1977-01-20 Republican 2.45 1973
6 Carter 1977-01-20 1981-01-20 Democratic 4.00 1976
7 Reagan 1981-01-20 1989-01-20 Republican 8.01 1980
8 Bush 1989-01-20 1993-01-20 Republican 4.00 1988
9 Clinton 1993-01-20 2001-01-20 Democratic 8.01 1992
10 Bush 2001-01-20 2009-01-20 Republican 8.01 2000
11 Obama 2009-01-20 2017-01-20 Democratic 8.01 2008

Some aspects of this data set are wrong, because presidential elections are only held every
four years. Lyndon Johnson assumed the o�ce after President Kennedy was assassinated in
1963, and Gerald Ford took over after President Nixon resigned in 1974. Thus, there were no
presidential elections in 1962 or 1973, as suggested in our data frame. We should overwrite

68 CHAPTER 4. DATA WRANGLING

these values with NA’s—which is how R denotes missing values. We can use the ifelse()
function to do this. Here, if the value of elected is either 1962 or 1973, we overwrite that
value with NA.1 Otherwise, we overwrite it with the same value that it currently has. In
this case, instead of checking to see whether the value of elected equals 1962 or 1973, for
brevity we can use the %in% operator to check to see whether the value of elected belongs
to the vector consisting of 1962 and 1973.

mypresidents <- mypresidents %>%
mutate(elected = ifelse((elected %in% c(1962, 1973)), NA, elected))

mypresidents

A tibble: 11 6
name start end party term.length elected

<chr> <date> <date> <chr> <dbl> <dbl>
1 Eisenhower 1953-01-20 1961-01-20 Republican 8.01 1952
2 Kennedy 1961-01-20 1963-11-22 Democratic 2.84 1960
3 Johnson 1963-11-22 1969-01-20 Democratic 5.17 NA
4 Nixon 1969-01-20 1974-08-09 Republican 5.55 1968
5 Ford 1974-08-09 1977-01-20 Republican 2.45 NA
6 Carter 1977-01-20 1981-01-20 Democratic 4.00 1976
7 Reagan 1981-01-20 1989-01-20 Republican 8.01 1980
8 Bush 1989-01-20 1993-01-20 Republican 4.00 1988
9 Clinton 1993-01-20 2001-01-20 Democratic 8.01 1992
10 Bush 2001-01-20 2009-01-20 Republican 8.01 2000
11 Obama 2009-01-20 2017-01-20 Democratic 8.01 2008

Finally, it is considered bad practice to use periods in the name of functions, data frames,
and variables in R. Ill-advised periods could conflict with R’s use of generic functions (i.e., R’s
mechanism for method overloading). Thus, we should change the name of the term.length
column that we created earlier. In this book, we will use snake case for function and variable
names. We can achieve this using the rename() function.

Pro Tip: Don’t use periods in the names of functions, data frames, or variables, as this
can conflict with R’s programming model.

mypresidents <- mypresidents %>% rename(term_length = term.length)
mypresidents

A tibble: 11 6
name start end party term_length elected

<chr> <date> <date> <chr> <dbl> <dbl>
1 Eisenhower 1953-01-20 1961-01-20 Republican 8.01 1952
2 Kennedy 1961-01-20 1963-11-22 Democratic 2.84 1960
3 Johnson 1963-11-22 1969-01-20 Democratic 5.17 NA
4 Nixon 1969-01-20 1974-08-09 Republican 5.55 1968
5 Ford 1974-08-09 1977-01-20 Republican 2.45 NA
6 Carter 1977-01-20 1981-01-20 Democratic 4.00 1976
7 Reagan 1981-01-20 1989-01-20 Republican 8.01 1980
8 Bush 1989-01-20 1993-01-20 Republican 4.00 1988

1Incidentally, Johnson was elected in 1964 as an incumbent.

4.1. A GRAMMAR FOR DATA WRANGLING 69

n

p

n

p

Figure 4.4: The arrange() function. At left, a data frame with an ordinal variable. At
right, the resulting data frame after sorting the rows in descending order of that variable.

9 Clinton 1993-01-20 2001-01-20 Democratic 8.01 1992
10 Bush 2001-01-20 2009-01-20 Republican 8.01 2000
11 Obama 2009-01-20 2017-01-20 Democratic 8.01 2008

4.1.3 arrange()

The function sort() will sort a vector, but not a data frame. The function that will sort a
data frame is called arrange(), and its behavior is illustrated in Figure 4.4.

In order to use arrange() on a data frame, you have to specify the data frame, and the
column by which you want it to be sorted. You also have to specify the direction in which
you want it to be sorted. Specifying multiple sort conditions will result in any ties being
broken. Thus, to sort our presidential data frame by the length of each president’s term,
we specify that we want the column term length in descending order.

mypresidents %>% arrange(desc(term_length))

A tibble: 11 6
name start end party term_length elected
<chr> <date> <date> <chr> <dbl> <dbl>

1 Eisenhower 1953-01-20 1961-01-20 Republican 8.01 1952
2 Reagan 1981-01-20 1989-01-20 Republican 8.01 1980
3 Clinton 1993-01-20 2001-01-20 Democratic 8.01 1992
4 Bush 2001-01-20 2009-01-20 Republican 8.01 2000
5 Obama 2009-01-20 2017-01-20 Democratic 8.01 2008
6 Nixon 1969-01-20 1974-08-09 Republican 5.55 1968
7 Johnson 1963-11-22 1969-01-20 Democratic 5.17 NA
8 Carter 1977-01-20 1981-01-20 Democratic 4.00 1976
9 Bush 1989-01-20 1993-01-20 Republican 4.00 1988
10 Kennedy 1961-01-20 1963-11-22 Democratic 2.84 1960
11 Ford 1974-08-09 1977-01-20 Republican 2.45 NA

A number of presidents completed either one or two full terms, and thus have the exact
same term length (4 or 8 years, respectively). To break these ties, we can further sort by
party and elected.

mypresidents %>% arrange(desc(term_length), party, elected)

A tibble: 11 6

70 CHAPTER 4. DATA WRANGLING

n

p

1

` p

Figure 4.5: The summarize() function. At left, a data frame. At right, the resulting data
frame after aggregating three of the columns.

name start end party term_length elected
<chr> <date> <date> <chr> <dbl> <dbl>

1 Clinton 1993-01-20 2001-01-20 Democratic 8.01 1992
2 Obama 2009-01-20 2017-01-20 Democratic 8.01 2008
3 Eisenhower 1953-01-20 1961-01-20 Republican 8.01 1952
4 Reagan 1981-01-20 1989-01-20 Republican 8.01 1980
5 Bush 2001-01-20 2009-01-20 Republican 8.01 2000
6 Nixon 1969-01-20 1974-08-09 Republican 5.55 1968
7 Johnson 1963-11-22 1969-01-20 Democratic 5.17 NA
8 Carter 1977-01-20 1981-01-20 Democratic 4.00 1976
9 Bush 1989-01-20 1993-01-20 Republican 4.00 1988
10 Kennedy 1961-01-20 1963-11-22 Democratic 2.84 1960
11 Ford 1974-08-09 1977-01-20 Republican 2.45 NA

Note that the default sort order is ascending order, so we do not need to specify an order
if that is what we want.

4.1.4 summarize() with group by()

Our last of the five verbs for single-table analysis is summarize(), which is nearly always
used in conjunction with group by(). The previous four verbs provided us with means to
manipulate a data frame in powerful and flexible ways. But the extent of the analysis we
can perform with these four verbs alone is limited. On the other hand, summarize() with
group by() enables us to make comparisons.

When used alone, summarize() collapses a data frame into a single row. This is illus-
trated in Figure 4.5. Critically, we have to specify how we want to reduce an entire column
of data into a single value. The method of aggregation that we specify controls what will
appear in the output.

mypresidents %>%
summarize(
N = n(), first_year = min(year(start)), last_year = max(year(end)),
num_dems = sum(party == "Democratic"),
years = sum(term_length),
avg_term_length = mean(term_length))

A tibble: 1 6

4.1. A GRAMMAR FOR DATA WRANGLING 71

N first_year last_year num_dems years avg_term_length
<int> <dbl> <dbl> <int> <dbl> <dbl>

1 11 1953 2017 5 64 5.82

The first argument to summarize() is a data frame, followed by a list of variables that
will appear in the output. Note that every variable in the output is defined by operations
performed on vectors—not on individual values. This is essential, since if the specification
of an output variable is not an operation on a vector, there is no way for R to know how to
collapse each column.

In this example, the function n() simply counts the number of rows. This is almost
always useful information.

Pro Tip: To help ensure that data aggregation is being done correctly, use n() every time
you use summarize().

The next two variables determine the first year that one of these presidents assumed
o�ce. This is the smallest year in the start column. Similarly, the most recent year is the
largest year in the end column. The variable num dems simply counts the number of rows
in which the value of the party variable was Democratic. Finally, the last two variables
compute the sum and average of the term length variable. Thus, we can quickly see that
5 of the 11 presidents who served from 1953 to 2017 were Democrats, and the average term
length over these 64 years was about 5.8 years.

This begs the question of whether Democratic or Republican presidents served a longer
average term during this time period. To figure this out, we can just execute summarize()
again, but this time, instead of the first argument being the data frame mypresidents, we
will specify that the rows of the mypresidents data frame should be grouped by the values
of the party variable. In this manner, the same computations as above will be carried out
for each party separately.

mypresidents %>%
group_by(party) %>%
summarize(
N = n(), first_year = min(year(start)), last_year = max(year(end)),
num_dems = sum(party == "Democratic"),
years = sum(term_length),
avg_term_length = mean(term_length))

A tibble: 2 7
party N first_year last_year num_dems years avg_term_length
<chr> <int> <dbl> <dbl> <int> <dbl> <dbl>

1 Democratic 5 1961 2017 5 28 5.6
2 Republican 6 1953 2009 0 36 6.0

This provides us with the valuable information that the six Republican presidents served
an average of 6 years in o�ce, while the five Democratic presidents served an average of
only 5.6. As with all of the dplyr verbs, the final output is a data frame.

Pro Tip: In this chapter we are using the dplyr package. The most common way to
extract data from data tables is with SQL (structured query language). We’ll introduce
SQL in Chapter 12. The dplyr package provides a new interface that fits more smoothly
into an overall data analysis workflow and is, in our opinion, easier to learn. Once you

72 CHAPTER 4. DATA WRANGLING

understand data wrangling with dplyr, it’s straightforward to learn SQL if needed. And
dplyr can work as an interface to many systems that use SQL internally.

4.2 Extended example: Ben’s time with the Mets

In this extended example, we will continue to explore Sean Lahman’s historical baseball
database, which contains complete seasonal records for all players on all Major League
Baseball teams going back to 1871. These data are made available in R via the Lahman
package [80]. Here again, while domain knowledge may be helpful, it is not necessary to
follow the example. To flesh out your understanding, try reading the Wikipedia entry on
Major League Baseball.

library(Lahman)
dim(Teams)

[1] 2805 48

The Teams table contains the seasonal results of every major league team in every season
since 1871. There are 2805 rows and 48 columns in this table, which is far too much to show
here, and would make for a quite unwieldy spreadsheet. Of course, we can take a peek at
what this table looks like by printing the first few rows of the table to the screen with the
head() command, but we won’t print that on the page of this book.

Ben worked for the New York Mets from 2004 to 2012. How did the team do during
those years? We can use filter() and select() to quickly identify only those pieces of
information that we care about.

mets <- Teams %>% filter(teamID == "NYN")
myMets <- mets %>% filter(yearID %in% 2004:2012)
myMets %>% select(yearID, teamID, W, L)

yearID teamID W L
1 2004 NYN 71 91
2 2005 NYN 83 79
3 2006 NYN 97 65
4 2007 NYN 88 74
5 2008 NYN 89 73
6 2009 NYN 70 92
7 2010 NYN 79 83
8 2011 NYN 77 85
9 2012 NYN 74 88

Notice that we have broken this down into three steps. First, we filter the rows of the
Teams data frame into only those teams that correspond to the New York Mets.2 There are
54 of those, since the Mets joined the National League in 1962.

nrow(mets)

[1] 54

2The teamID value of NYN stands for the New York National League club.

4.2. EXTENDED EXAMPLE: BEN’S TIME WITH THE METS 73

Next, we filtered these data so as to include only those seasons in which Ben worked
for the team—those with yearID between 2004 and 2012. Finally, we printed to the screen
only those columns that were relevant to our question: the year, the team’s ID, and the
number of wins and losses that the team had.

While this process is logical, the code can get unruly, since two ancillary data frames
(mets and myMets) were created during the process. It may be the case that we’d like to
use data frames later in the analysis. But if not, they are just cluttering our workspace,
and eating up memory. A more streamlined way to achieve the same result would be to
nest these commands together.

select(filter(mets, teamID == "NYN" & yearID %in% 2004:2012),
yearID, teamID, W, L)

yearID teamID W L
1 2004 NYN 71 91
2 2005 NYN 83 79
3 2006 NYN 97 65
4 2007 NYN 88 74
5 2008 NYN 89 73
6 2009 NYN 70 92
7 2010 NYN 79 83
8 2011 NYN 77 85
9 2012 NYN 74 88

This way, no additional data frames were created. However, it is easy to see that as we
nest more and more of these operations together, this code could become di�cult to read.
To maintain readability, we instead chain these operations, rather than nest them (and get
the same exact results).

Teams %>%
select(yearID, teamID, W, L) %>%
filter(teamID == "NYN" & yearID %in% 2004:2012)

This piping syntax (introduced in Section 4.1.1) is provided by the dplyr package. It
retains the step-by-step logic of our original code, while being easily readable, and e�cient
with respect to memory and the creation of temporary data frames. In fact, there are also
performance enhancements under the hood that make this the most e�cient way to do
these kinds of computations. For these reasons we will use this syntax whenever possible
throughout the book. Note that we only have to type Teams once—it is implied by the
pipe operator (%>%) that the subsequent command takes the previous data frame as its first
argument. Thus, df %>% f(y) is equivalent to f(df, y).

We’ve answered the simple question of how the Mets performed during the time that
Ben was there, but since we are data scientists, we are interested in deeper questions. For
example, some of these seasons were subpar—the Mets had more losses than wins. Did the
team just get unlucky in those seasons? Or did they actually play as badly as their record
indicates?

In order to answer this question, we need a model for expected winning percentage. It
turns out that one of the most widely used contributions to the field of baseball analytics
(courtesy of Bill James) is exactly that. This model translates the number of runs 3 that

3In baseball, a team scores a run when a player traverses the bases and return to home plate. The team
with the most runs in each game wins, and no ties are allowed.

74 CHAPTER 4. DATA WRANGLING

a team scores and allows over the course of an entire season into an expectation for how
many games they should have won. The simplest version of this model is this:

\WPct =
1

1 +
�
RA

RS

�2 ,

where RA is the number of runs the team allows, RS is the number of runs that the team

scores, and \WPct is the team’s expected winning percentage. Luckily for us, the runs scored
and allowed are present in the Teams table, so let’s grab them and save them in a new data
frame.

metsBen <- Teams %>% select(yearID, teamID, W, L, R, RA) %>%
filter(teamID == "NYN" & yearID %in% 2004:2012)

metsBen

yearID teamID W L R RA
1 2004 NYN 71 91 684 731
2 2005 NYN 83 79 722 648
3 2006 NYN 97 65 834 731
4 2007 NYN 88 74 804 750
5 2008 NYN 89 73 799 715
6 2009 NYN 70 92 671 757
7 2010 NYN 79 83 656 652
8 2011 NYN 77 85 718 742
9 2012 NYN 74 88 650 709

First, note that the runs-scored variable is called R in the Teams table, but to stick with
our notation we want to rename it RS.

metsBen <- metsBen %>% rename(RS = R) # new name = old name
metsBen

yearID teamID W L RS RA
1 2004 NYN 71 91 684 731
2 2005 NYN 83 79 722 648
3 2006 NYN 97 65 834 731
4 2007 NYN 88 74 804 750
5 2008 NYN 89 73 799 715
6 2009 NYN 70 92 671 757
7 2010 NYN 79 83 656 652
8 2011 NYN 77 85 718 742
9 2012 NYN 74 88 650 709

Next, we need to compute the team’s actual winning percentage in each of these seasons.
Thus, we need to add a new column to our data frame, and we do this with the mutate()
command.

metsBen <- metsBen %>% mutate(WPct = W / (W + L))
metsBen

yearID teamID W L RS RA WPct
1 2004 NYN 71 91 684 731 0.438

4.2. EXTENDED EXAMPLE: BEN’S TIME WITH THE METS 75

2 2005 NYN 83 79 722 648 0.512
3 2006 NYN 97 65 834 731 0.599
4 2007 NYN 88 74 804 750 0.543
5 2008 NYN 89 73 799 715 0.549
6 2009 NYN 70 92 671 757 0.432
7 2010 NYN 79 83 656 652 0.488
8 2011 NYN 77 85 718 742 0.475
9 2012 NYN 74 88 650 709 0.457

We also need to compute the model estimates for winning percentage.

metsBen <- metsBen %>% mutate(WPct_hat = 1 / (1 + (RA/RS)^2))
metsBen

yearID teamID W L RS RA WPct WPct_hat
1 2004 NYN 71 91 684 731 0.438 0.467
2 2005 NYN 83 79 722 648 0.512 0.554
3 2006 NYN 97 65 834 731 0.599 0.566
4 2007 NYN 88 74 804 750 0.543 0.535
5 2008 NYN 89 73 799 715 0.549 0.555
6 2009 NYN 70 92 671 757 0.432 0.440
7 2010 NYN 79 83 656 652 0.488 0.503
8 2011 NYN 77 85 718 742 0.475 0.484
9 2012 NYN 74 88 650 709 0.457 0.457

The expected number of wins is then equal to the product of the expected winning
percentage times the number of games.

metsBen <- metsBen %>% mutate(W_hat = WPct_hat * (W + L))
metsBen

yearID teamID W L RS RA WPct WPct_hat W_hat
1 2004 NYN 71 91 684 731 0.438 0.467 75.6
2 2005 NYN 83 79 722 648 0.512 0.554 89.7
3 2006 NYN 97 65 834 731 0.599 0.566 91.6
4 2007 NYN 88 74 804 750 0.543 0.535 86.6
5 2008 NYN 89 73 799 715 0.549 0.555 90.0
6 2009 NYN 70 92 671 757 0.432 0.440 71.3
7 2010 NYN 79 83 656 652 0.488 0.503 81.5
8 2011 NYN 77 85 718 742 0.475 0.484 78.3
9 2012 NYN 74 88 650 709 0.457 0.457 74.0

In this case, the Mets’ fortunes were better than expected in three of these seasons, and
worse than expected in the other six.

filter(metsBen, W >= W_hat)

yearID teamID W L RS RA WPct WPct_hat W_hat
1 2006 NYN 97 65 834 731 0.599 0.566 91.6
2 2007 NYN 88 74 804 750 0.543 0.535 86.6
3 2012 NYN 74 88 650 709 0.457 0.457 74.0

76 CHAPTER 4. DATA WRANGLING

filter(metsBen, W < W_hat)

yearID teamID W L RS RA WPct WPct_hat W_hat
1 2004 NYN 71 91 684 731 0.438 0.467 75.6
2 2005 NYN 83 79 722 648 0.512 0.554 89.7
3 2008 NYN 89 73 799 715 0.549 0.555 90.0
4 2009 NYN 70 92 671 757 0.432 0.440 71.3
5 2010 NYN 79 83 656 652 0.488 0.503 81.5
6 2011 NYN 77 85 718 742 0.475 0.484 78.3

Naturally, the Mets experienced ups and downs during Ben’s time with the team. Which
seasons were best? To figure this out, we can simply sort the rows of the data frame.

arrange(metsBen, desc(WPct))

yearID teamID W L RS RA WPct WPct_hat W_hat
1 2006 NYN 97 65 834 731 0.599 0.566 91.6
2 2008 NYN 89 73 799 715 0.549 0.555 90.0
3 2007 NYN 88 74 804 750 0.543 0.535 86.6
4 2005 NYN 83 79 722 648 0.512 0.554 89.7
5 2010 NYN 79 83 656 652 0.488 0.503 81.5
6 2011 NYN 77 85 718 742 0.475 0.484 78.3
7 2012 NYN 74 88 650 709 0.457 0.457 74.0
8 2004 NYN 71 91 684 731 0.438 0.467 75.6
9 2009 NYN 70 92 671 757 0.432 0.440 71.3

In 2006, the Mets had the best record in baseball during the regular season and nearly
made the World Series. But how do these seasons rank in terms of the team’s performance
relative to our model?

metsBen %>%
mutate(Diff = W - W_hat) %>%
arrange(desc(Diff))

yearID teamID W L RS RA WPct WPct_hat W_hat Diff
1 2006 NYN 97 65 834 731 0.599 0.566 91.6 5.3840
2 2007 NYN 88 74 804 750 0.543 0.535 86.6 1.3774
3 2012 NYN 74 88 650 709 0.457 0.457 74.0 0.0199
4 2008 NYN 89 73 799 715 0.549 0.555 90.0 -0.9605
5 2009 NYN 70 92 671 757 0.432 0.440 71.3 -1.2790
6 2011 NYN 77 85 718 742 0.475 0.484 78.3 -1.3377
7 2010 NYN 79 83 656 652 0.488 0.503 81.5 -2.4954
8 2004 NYN 71 91 684 731 0.438 0.467 75.6 -4.6250
9 2005 NYN 83 79 722 648 0.512 0.554 89.7 -6.7249

So 2006 was the Mets’ most fortunate year—since they won five more games than our
model predicts—but 2005 was the least fortunate—since they won almost seven games fewer
than our model predicts. This type of analysis helps us understand how the Mets performed
in individual seasons, but we know that any randomness that occurs in individual years is
likely to average out over time. So while it is clear that the Mets performed well in some
seasons and poorly in others, what can we say about their overall performance?

4.2. EXTENDED EXAMPLE: BEN’S TIME WITH THE METS 77

We can easily summarize a single variable with the favstats() command from the
mosaic package.

favstats(~ W, data = metsBen)

min Q1 median Q3 max mean sd n missing
70 74 79 88 97 80.9 9.1 9 0

This tells us that the Mets won nearly 81 games on average during Ben’s tenure, which
corresponds almost exactly to a 0.500 winning percentage, since there are 162 games in a
regular season. But we may be interested in aggregating more than one variable at a time.
To do this, we use summarize().

metsBen %>%
summarize(
num_years = n(), total_W = sum(W), total_L = sum(L),
total_WPct = sum(W) / sum(W + L), sum_resid = sum(W - W_hat))

num_years total_W total_L total_WPct sum_resid
1 9 728 730 0.499 -10.6

In these nine years, the Mets had a combined record of 728 wins and 730 losses, for
an overall winning percentage of .499. Just one extra win would have made them exactly
0.500! (If we could pick which game, we would definitely pick the final game of the 2007
season. A win there would have resulted in a playo↵ berth.) However, we’ve also learned
that the team under-performed relative to our model by a total of 10.6 games over those
nine seasons.

Usually, when we are summarizing a data frame like we did above, it is interesting to
consider di↵erent groups. In this case, we can discretize these years into three chunks:
one for each of the three general managers under whom Ben worked. Jim Duquette was
the Mets’ general manager in 2004, Omar Minaya from 2005 to 2010, and Sandy Alderson
from 2011 to 2012. We can define these eras using two nested ifelse() functions (the
case when() function in the dplyr package is helpful in such a setting).

metsBen <- metsBen %>%
mutate(
gm = ifelse(yearID == 2004, "Duquette",

ifelse(yearID >= 2011, "Alderson", "Minaya")))

Next, we use the gm variable to define these groups with the group by() operator. The
combination of summarizing data by groups can be very powerful. Note that while the
Mets were far more successful during Minaya’s regime (i.e., many more wins than losses),
they did not meet expectations in any of the three periods.

metsBen %>%
group_by(gm) %>%
summarize(
num_years = n(), total_W = sum(W), total_L = sum(L),
total_WPct = sum(W) / sum(W + L), sum_resid = sum(W - W_hat)) %>%

arrange(desc(sum_resid))

A tibble: 3 6

78 CHAPTER 4. DATA WRANGLING

gm num_years total_W total_L total_WPct sum_resid
<chr> <int> <int> <int> <dbl> <dbl>

1 Alderson 2 151 173 0.466 -1.32
2 Duquette 1 71 91 0.438 -4.63
3 Minaya 6 506 466 0.521 -4.70

The full power of the chaining operator is revealed below, where we do all the analysis
at once, but retain the step-by-step logic.

Teams %>%
select(yearID, teamID, W, L, R, RA) %>%
filter(teamID == "NYN" & yearID %in% 2004:2012) %>%
rename(RS = R) %>%
mutate(
WPct = W / (W + L), WPct_hat = 1 / (1 + (RA/RS)^2),
W_hat = WPct_hat * (W + L),
gm = ifelse(yearID == 2004, "Duquette",

ifelse(yearID >= 2011, "Alderson", "Minaya"))) %>%
group_by(gm) %>%
summarize(
num_years = n(), total_W = sum(W), total_L = sum(L),
total_WPct = sum(W) / sum(W + L), sum_resid = sum(W - W_hat)) %>%

arrange(desc(sum_resid))

A tibble: 3 6
gm num_years total_W total_L total_WPct sum_resid

<chr> <int> <int> <int> <dbl> <dbl>
1 Alderson 2 151 173 0.466 -1.32
2 Duquette 1 71 91 0.438 -4.63
3 Minaya 6 506 466 0.521 -4.70

Even more generally, we might be more interested in how the Mets performed relative
to our model, in the context of all teams during that nine year period. All we need to do is
remove the teamID filter and group by franchise (franchID) instead.

Teams %>% select(yearID, teamID, franchID, W, L, R, RA) %>%
filter(yearID %in% 2004:2012) %>%
rename(RS = R) %>%
mutate(
WPct = W / (W + L), WPctHat = 1 / (1 + (RA/RS)^2),
WHat = WPctHat * (W + L)) %>%

group_by(franchID) %>%
summarize(
numYears = n(), totalW = sum(W), totalL = sum(L),
totalWPct = sum(W) / sum(W + L), sumResid = sum(W - WHat)) %>%

arrange(sumResid) %>%
print(n = 6)

A tibble: 30 6
franchID numYears totalW totalL totalWPct sumResid
<fctr> <int> <int> <int> <dbl> <dbl>

4.3. COMBINING MULTIPLE TABLES 79

1 TOR 9 717 740 0.492 -29.2
2 ATL 9 781 677 0.536 -24.0
3 COL 9 687 772 0.471 -22.7
4 CHC 9 706 750 0.485 -14.5
5 CLE 9 710 748 0.487 -13.9
6 NYM 9 728 730 0.499 -10.6
... with 24 more rows

We can see now that only five other teams fared worse than the Mets,4 relative to our
model, during this time period. Perhaps they are cursed!

4.3 Combining multiple tables

In the previous section, we illustrated how the five verbs can be chained to perform opera-
tions on a single table. This single table is reminiscent of a single well-organized spreadsheet.
But in the same way that a workbook can contain multiple spreadsheets, we will often work
with multiple tables. In Chapter 12, we will describe how multiple tables related by unique
identifiers called keys can be organized into a relational database management system.

It is more e�cient for the computer to store and search tables in which “like is stored
with like.” Thus, a database maintained by the Bureau of Transportation Statistics on
the arrival times of U.S. commercial flights will consist of multiple tables, each of which
contains data about di↵erent things. For example, the nycflights13 package contains one
table about flights—each row in this table is a single flight. As there are many flights, you
can imagine that this table will get very long—hundreds of thousands of rows per year. But
there are other related kinds of information that we will want to know about these flights.
We would certainly be interested in the particular airline to which each flight belonged. It
would be ine�cient to store the complete name of the airline (e.g., American Airlines
Inc.) in every row of the flights table. A simple code (e.g., AA) would take up less space on
disk. For small tables, the savings of storing two characters instead of 25 is insignificant,
but for large tables, it can add up to noticeable savings both in terms of the size of data
on disk, and the speed with which we can search it. However, we still want to have the
full names of the airlines available if we need them. The solution is to store the data about
airlines in a separate table called airlines, and to provide a key that links the data in the
two tables together.

4.3.1 inner join()

If we examine the first few rows of the flights table, we observe that the carrier column
contains a two-character string corresponding to the airline.

library(nycflights13)
head(flights, 3)

A tibble: 3 19
year month day dep_time sched_dep_time dep_delay arr_time
<int> <int> <int> <int> <int> <dbl> <int>

1 2013 1 1 517 515 2 830
2 2013 1 1 533 529 4 850

4Note that whereas the teamID that corresponds to the Mets is NYN, the value of the franchID variable
is NYM.

80 CHAPTER 4. DATA WRANGLING

3 2013 1 1 542 540 2 923
... with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
time_hour <dttm>

In the airlines table, we have those same two-character strings, but also the full names
of the airline.

head(airlines, 3)

A tibble: 3 2
carrier name
<chr> <chr>

1 9E Endeavor Air Inc.
2 AA American Airlines Inc.
3 AS Alaska Airlines Inc.

In order to retrieve a list of flights and the full names of the airlines that managed each
flight, we need to match up the rows in the flights table with those rows in the airlines
table that have the corresponding values for the carrier column in both tables. This is
achieved with the function inner join().

flightsJoined <- flights %>%
inner_join(airlines, by = c("carrier" = "carrier"))

glimpse(flightsJoined)

Observations: 336,776
Variables: 20
$ year <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013,...
$ month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
$ day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
$ dep_time <int> 517, 533, 542, 544, 554, 554, 555, 557, 557, 55...
$ sched_dep_time <int> 515, 529, 540, 545, 600, 558, 600, 600, 600, 60...
$ dep_delay <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, -2, -2, -2...
$ arr_time <int> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 7...
$ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 7...
$ arr_delay <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -...
$ carrier <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV",...
$ flight <int> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79...
$ tailnum <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN...
$ origin <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR"...
$ dest <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL"...
$ air_time <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 140, 138...
$ distance <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 229, 94...
$ hour <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5,...
$ minute <dbl> 15, 29, 40, 45, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ time_hour <dttm> 2013-01-01 05:00:00, 2013-01-01 05:00:00, 2013...
$ name <chr> "United Air Lines Inc.", "United Air Lines Inc....

Notice that the flightsJoined data frame now has an additional variable called name.

4.3. COMBINING MULTIPLE TABLES 81

This is the column from airlines that is now attached to our combined data frame. Now
we can view the full names of the airlines instead of the cryptic two-character codes.

flightsJoined %>%
select(carrier, name, flight, origin, dest) %>%
head(3)

A tibble: 3 5
carrier name flight origin dest
<chr> <chr> <int> <chr> <chr>

1 UA United Air Lines Inc. 1545 EWR IAH
2 UA United Air Lines Inc. 1714 LGA IAH
3 AA American Airlines Inc. 1141 JFK MIA

In an inner join(), the result set contains only those rows that have matches in both
tables. In this case, all of the rows in flights have exactly one corresponding entry in
airlines, so the number of rows in flightsJoined is the same as the number of rows in
flights (this will not always be the case).

nrow(flights)

[1] 336776

nrow(flightsJoined)

[1] 336776

Pro Tip: It is always a good idea to carefully check that the number of rows returned by
a join operation is what you expected. In particular, you often want to check for rows in
one table that matched to more than one row in the other table.

4.3.2 left join()

Another commonly used type of join is a left join(). Here the rows of the first table are
always returned, regardless of whether there is a match in the second table.

Suppose that we are only interested in flights from the NYC airports to the West Coast.
Specifically, we’re only interested in airports in the Pacific Time Zone. Thus, we filter the
airports data frame to only include those 152 airports.

airportsPT <- filter(airports, tz == -8)
nrow(airportsPT)

[1] 152

Now, if we perform an inner join() on flights and airportsPT, matching the desti-
nations in flights to the FAA codes in airports, we retrieve only those flights that flew
to our airports in the Pacific Time Zone.

nycDestsPT <- flights %>% inner_join(airportsPT, by = c("dest" = "faa"))
nrow(nycDestsPT)

[1] 46324

82 CHAPTER 4. DATA WRANGLING

However, if we use a left join() with the same conditions, we retrieve all of the rows
of flights. NA’s are inserted into the columns where no matched data was found.

nycDests <- flights %>% left_join(airportsPT, by = c("dest" = "faa"))
nrow(nycDests)

[1] 336776

sum(is.na(nycDests$name))

[1] 290452

Left joins are particularly useful in databases in which referential integrity is broken (not
all of the keys are present—see Chapter 12).

4.4 Extended example: Manny Ramirez

In the context of baseball and the Lahman package, multiple tables are used to store informa-
tion. The batting statistics of players are stored in one table (Batting), while information
about people (most of whom are players) is in a di↵erent table (Master).

Every row in the Batting table contains the statistics accumulated by a single player
during a single stint for a single team in a single year. Thus, a player like Manny Ramirez
has many rows in the Batting table (21, in fact).

manny <- filter(Batting, playerID == "ramirma02")
nrow(manny)

[1] 21

Using what we’ve learned, we can quickly tabulate Ramirez’s most common career of-
fensive statistics. For those new to baseball, some additional background may be helpful.
A hit (H) occurs when a batter reaches base safely. A home run (HR) occurs when the ball is
hit out of the park or the runner advances through all of the bases during that play. Barry
Bonds has the record for most home runs (762) hit in a career. A player’s batting average
(BA) is the ratio of the number of hits to the number of eligible at-bats. The highest career
batting average in major league baseball history of 0.366 was achieved by Ty Cobb—season
averages above 0.300 are impressive. Finally, runs batted in (RBI) is the number of runners
(including the batter in the case of a home run) that score during that batter’s at-bat. Hank
Aaron has the record for most career RBIs with 2,297.

manny %>% summarize(
span = paste(min(yearID), max(yearID), sep = "-"),
numYears = n_distinct(yearID), numTeams = n_distinct(teamID),
BA = sum(H)/sum(AB), tH = sum(H), tHR = sum(HR), tRBI = sum(RBI))

span numYears numTeams BA tH tHR tRBI
1 1993-2011 19 5 0.312 2574 555 1831

Notice how we have used the paste() function to combine results from multiple variables
into a new variable, and how we have used the n distinct() function to count the number
of distinct rows. In his 19-year career, Ramirez hit 555 home runs, which puts him in the
top 20 among all Major League players.

4.4. EXTENDED EXAMPLE: MANNY RAMIREZ 83

However, we also see that Ramirez played for five teams during his career. Did he
perform equally well for each of them? Breaking his statistics down by team, or by league,
is as easy as adding an appropriate group by() command.

manny %>%
group_by(teamID) %>%
summarize(
span = paste(min(yearID), max(yearID), sep = "-"),
numYears = n_distinct(yearID), numTeams = n_distinct(teamID),
BA = sum(H)/sum(AB), tH = sum(H), tHR = sum(HR), tRBI = sum(RBI)) %>%

arrange(span)

A tibble: 5 8
teamID span numYears numTeams BA tH tHR tRBI
<fctr> <chr> <int> <int> <dbl> <int> <int> <int>

1 CLE 1993-2000 8 1 0.3130 1086 236 804
2 BOS 2001-2008 8 1 0.3117 1232 274 868
3 LAN 2008-2010 3 1 0.3224 237 44 156
4 CHA 2010-2010 1 1 0.2609 18 1 2
5 TBA 2011-2011 1 1 0.0588 1 0 1

While Ramirez was very productive for Cleveland, Boston, and the Los Angeles Dodgers,
his brief tours with the Chicago White Sox and Tampa Bay Rays were less than stellar. In
the pipeline below, we can see that Ramirez spent the bulk of his career in the American
League.

manny %>%
group_by(lgID) %>%
summarize(
span = paste(min(yearID), max(yearID), sep = "-"),
numYears = n_distinct(yearID), numTeams = n_distinct(teamID),
BA = sum(H)/sum(AB), tH = sum(H), tHR = sum(HR), tRBI = sum(RBI)) %>%

arrange(span)

A tibble: 2 8
lgID span numYears numTeams BA tH tHR tRBI

<fctr> <chr> <int> <int> <dbl> <int> <int> <int>
1 AL 1993-2011 18 4 0.311 2337 511 1675
2 NL 2008-2010 3 1 0.322 237 44 156

If Ramirez played in only 19 di↵erent seasons, why were there 21 rows attributed to him?
Notice that in 2008, he was traded from the Boston Red Sox to the Los Angeles Dodgers,
and thus played for both teams. Similarly, in 2010 he played for both the Dodgers and
the Chicago White Sox. When summarizing data, it is critically important to understand
exactly how the rows of your data frame are organized. To see what can go wrong here,
suppose we were interested in tabulating the number of seasons in which Ramirez hit at
least 30 home runs. The simplest solution is:

manny %>%
filter(HR >= 30) %>%
nrow()

[1] 11

84 CHAPTER 4. DATA WRANGLING

But this answer is wrong, because in 2008, Ramirez hit 20 home runs for Boston before
being traded and then 17 more for the Dodgers afterwards. Neither of those rows were
counted, since they were both filtered out. Thus, the year 2008 does not appear among the
11 that we counted in the previous pipeline. Recall that each row in the manny data frame
corresponds to one stint with one team in one year. On the other hand, the question asks
us to consider each year, regardless of team. In order to get the right answer, we have to
aggregate the rows by team. Thus, the correct solution is:

manny %>%
group_by(yearID) %>%
summarize(tHR = sum(HR)) %>%
filter(tHR >= 30) %>%
nrow()

[1] 12

Note that the filter() operation is applied to tHR, the total number of home runs in a
season, and not HR, the number of home runs in a single stint for a single team in a single
season. (This distinction between filtering the rows of the original data versus the rows of
the aggregated results will appear again in Chapter 12.)

We began this exercise by filtering the Batting table for the player with playerID equal
to ramirma02. How did we know to use this identifier? This player ID is known as a key,
and in fact, playerID is the primary key defined in the Master table. That is, every row
in the Master table is uniquely identified by the value of playerID. Thus there is exactly
one row in that table for which playerID is equal to ramirma02.

But how did we know that this ID corresponds to Manny Ramirez? We can search the
Master table. The data in this table include characteristics about Manny Ramirez that do
not change across multiple seasons (with the possible exception of his weight).

Master %>% filter(nameLast == "Ramirez" & nameFirst == "Manny")

playerID birthYear birthMonth birthDay birthCountry birthState
1 ramirma02 1972 5 30 D.R. Distrito Nacional

birthCity deathYear deathMonth deathDay deathCountry deathState
1 Santo Domingo NA NA NA <NA> <NA>
deathCity nameFirst nameLast nameGiven weight height bats throws

1 <NA> Manny Ramirez Manuel Aristides 225 72 R R
debut finalGame retroID bbrefID deathDate birthDate

1 1993-09-02 2011-04-06 ramim002 ramirma02 <NA> 1972-05-30

The playerID column forms a primary key in the Master table, but it does not in
the Batting table, since as we saw previously, there were 21 rows with that playerID. In
the Batting table, the playerID column is known as a foreign key, in that it references a
primary key in another table. For our purposes, the presence of this column in both tables
allows us to link them together. This way, we can combine data from the Batting table
with data in the Master table. We do this with inner join() by specifying the two tables
that we want to join, and the corresponding columns in each table that provide the link.
Thus, if we want to display Ramirez’s name in our previous result, as well as his age, we
must join the Batting and Master tables together.

4.4. EXTENDED EXAMPLE: MANNY RAMIREZ 85

Batting %>%
filter(playerID == "ramirma02") %>%
inner_join(Master, by = c("playerID" = "playerID")) %>%
group_by(yearID) %>%
summarize(
Age = max(yearID - birthYear), numTeams = n_distinct(teamID),
BA = sum(H)/sum(AB), tH = sum(H), tHR = sum(HR), tRBI = sum(RBI)) %>%

arrange(yearID)

A tibble: 19 7
yearID Age numTeams BA tH tHR tRBI
<int> <int> <int> <dbl> <int> <int> <int>

1 1993 21 1 0.1698 9 2 5
2 1994 22 1 0.2690 78 17 60
3 1995 23 1 0.3079 149 31 107
4 1996 24 1 0.3091 170 33 112
5 1997 25 1 0.3280 184 26 88
6 1998 26 1 0.2942 168 45 145
7 1999 27 1 0.3333 174 44 165
8 2000 28 1 0.3508 154 38 122
9 2001 29 1 0.3062 162 41 125
10 2002 30 1 0.3486 152 33 107
11 2003 31 1 0.3251 185 37 104
12 2004 32 1 0.3081 175 43 130
13 2005 33 1 0.2924 162 45 144
14 2006 34 1 0.3207 144 35 102
15 2007 35 1 0.2961 143 20 88
16 2008 36 2 0.3315 183 37 121
17 2009 37 1 0.2898 102 19 63
18 2010 38 2 0.2981 79 9 42
19 2011 39 1 0.0588 1 0 1

Pro Tip: Always specify the by argument that defines the join condition. Don’t rely on
the defaults.

Notice that even though Ramirez’s age is a constant for each season, we have to use a
vector operation (i.e., max()) in order to reduce any potential vector to a single number.

Which season was Ramirez’s best as a hitter? One relatively simple measurement of
batting prowess is OPS, or On-Base Plus Slugging Percentage, which is the simple sum
of two other statistics: On-Base Percentage (OBP) and Slugging Percentage (SLG). The
former basically measures the percentage of time that a batter reaches base safely, whether
it comes via a hit (H), a base on balls (BB), or from being hit by the pitch (HBP). The latter
measures the average number of bases advanced per at-bat (AB), where a single is worth
one base, a double (X2B) is worth two, a triple (X3B) is worth three, and a home run (HR)
is worth four. (Note that every hit is exactly one of a single, double, triple, or home run.)
Let’s add this statistic to our results and use it to rank the seasons.

mannyBySeason <- Batting %>%
filter(playerID == "ramirma02") %>%
inner_join(Master, by = c("playerID" = "playerID")) %>%

86 CHAPTER 4. DATA WRANGLING

group_by(yearID) %>%
summarize(
Age = max(yearID - birthYear), numTeams = n_distinct(teamID),
BA = sum(H)/sum(AB), tH = sum(H), tHR = sum(HR), tRBI = sum(RBI),
OBP = sum(H + BB + HBP) / sum(AB + BB + SF + HBP),
SLG = sum(H + X2B + 2*X3B + 3*HR) / sum(AB)) %>%

mutate(OPS = OBP + SLG) %>%
arrange(desc(OPS))

mannyBySeason

A tibble: 19 10
yearID Age numTeams BA tH tHR tRBI OBP SLG OPS
<int> <int> <int> <dbl> <int> <int> <int> <dbl> <dbl> <dbl>

1 2000 28 1 0.3508 154 38 122 0.4568 0.6970 1.154
2 1999 27 1 0.3333 174 44 165 0.4422 0.6628 1.105
3 2002 30 1 0.3486 152 33 107 0.4498 0.6468 1.097
4 2006 34 1 0.3207 144 35 102 0.4391 0.6192 1.058
5 2008 36 2 0.3315 183 37 121 0.4297 0.6014 1.031
6 2003 31 1 0.3251 185 37 104 0.4271 0.5870 1.014
7 2001 29 1 0.3062 162 41 125 0.4048 0.6087 1.014
8 2004 32 1 0.3081 175 43 130 0.3967 0.6127 1.009
9 2005 33 1 0.2924 162 45 144 0.3877 0.5939 0.982
10 1996 24 1 0.3091 170 33 112 0.3988 0.5818 0.981
11 1998 26 1 0.2942 168 45 145 0.3771 0.5989 0.976
12 1995 23 1 0.3079 149 31 107 0.4025 0.5579 0.960
13 1997 25 1 0.3280 184 26 88 0.4147 0.5383 0.953
14 2009 37 1 0.2898 102 19 63 0.4176 0.5312 0.949
15 2007 35 1 0.2961 143 20 88 0.3884 0.4928 0.881
16 1994 22 1 0.2690 78 17 60 0.3571 0.5207 0.878
17 2010 38 2 0.2981 79 9 42 0.4094 0.4604 0.870
18 1993 21 1 0.1698 9 2 5 0.2000 0.3019 0.502
19 2011 39 1 0.0588 1 0 1 0.0588 0.0588 0.118

We see that Ramirez’s OPS was highest in 2000. But 2000 was the height of the steroid
era, when many sluggers were putting up tremendous o↵ensive numbers. As data scientists,
we know that it would be more instructive to put Ramirez’s OPS in context by comparing
it to the league average OPS in each season—the resulting ratio is often called OPS+. To
do this, we will need to compute those averages. Because there is missing data in some of
these columns in some of these years, we need to invoke the na.rm argument to ignore that
data.

mlb <- Batting %>%
filter(yearID %in% 1993:2011) %>%
group_by(yearID) %>%
summarize(lgOPS =
sum(H + BB + HBP, na.rm = TRUE) / sum(AB + BB + SF + HBP, na.rm = TRUE) +
sum(H + X2B + 2*X3B + 3*HR, na.rm = TRUE) / sum(AB, na.rm = TRUE))

Next, we need to match these league average OPS values to the corresponding entries
for Ramirez. We can do this by joining these tables together, and computing the ratio of
Ramirez’s OPS to that of the league average.

4.4. EXTENDED EXAMPLE: MANNY RAMIREZ 87

mannyRatio <- mannyBySeason %>%
inner_join(mlb, by = c("yearID" = "yearID")) %>%
mutate(OPSplus = OPS / lgOPS) %>%
select(yearID, Age, OPS, lgOPS, OPSplus) %>%
arrange(desc(OPSplus))

mannyRatio

A tibble: 19 5
yearID Age OPS lgOPS OPSplus
<int> <int> <dbl> <dbl> <dbl>

1 2000 28 1.154 0.782 1.475
2 2002 30 1.097 0.748 1.466
3 1999 27 1.105 0.778 1.420
4 2006 34 1.058 0.768 1.377
5 2008 36 1.031 0.749 1.376
6 2003 31 1.014 0.755 1.344
7 2001 29 1.014 0.759 1.336
8 2004 32 1.009 0.763 1.323
9 2005 33 0.982 0.749 1.310
10 1998 26 0.976 0.755 1.292
11 1996 24 0.981 0.767 1.278
12 1995 23 0.960 0.755 1.272
13 2009 37 0.949 0.751 1.264
14 1997 25 0.953 0.756 1.261
15 2010 38 0.870 0.728 1.194
16 2007 35 0.881 0.758 1.162
17 1994 22 0.878 0.763 1.150
18 1993 21 0.502 0.736 0.682
19 2011 39 0.118 0.720 0.163

In this case, 2000 still ranks as Ramirez’s best season relative to his peers, but notice
that his 1999 season has fallen from 2nd to 3rd. Since by definition a league batter has
an OPS+ of 1, Ramirez posted 17 consecutive seasons with an OPS that was at least 15%
better than the average across the major leagues—a truly impressive feat.

Finally, not all joins are the same. An inner join() requires corresponding entries in
both tables. Conversely, a left join() returns at least as many rows as there are in the first
table, regardless of whether there are matches in the second table. Thus, an inner join() is
bidirectional, whereas in a left join(), the order in which you specify the tables matters.

Consider the career of Cal Ripken, who played in 21 seasons from 1981 to 2001. His
career overlapped with Ramirez’s in the nine seasons from 1993 to 2001, so for those, the
league averages we computed before are useful.

ripken <- Batting %>% filter(playerID == "ripkeca01")
nrow(inner_join(ripken, mlb, by = c("yearID" = "yearID")))

[1] 9

nrow(inner_join(mlb, ripken, by = c("yearID" = "yearID"))) #same

[1] 9

For seasons when Ramirez did not play, NA’s will be returned.

88 CHAPTER 4. DATA WRANGLING

ripken %>%
left_join(mlb, by = c("yearID" = "yearID")) %>%
select(yearID, playerID, lgOPS) %>%
head(3)

yearID playerID lgOPS
1 1981 ripkeca01 NA
2 1982 ripkeca01 NA
3 1983 ripkeca01 NA

Conversely, by reversing the order of the tables in the join, we return the 19 seasons
for which we have already computed the league averages, regardless of whether there is a
match for Ripken (results not displayed).

mlb %>%
left_join(ripken, by = c("yearID" = "yearID")) %>%
select(yearID, playerID, lgOPS)

4.5 Further resources

Hadley Wickham is an enormously influential innovator in the field of statistical comput-
ing. Along with his colleagues at RStudio and other organizations, he has made significant
contributions to improve data wrangling in R. These packages are sometimes called the
“Hadleyverse” or the “tidyverse,” and are now manageable through a single tidyverse [231]
package. His papers and vignettes describing widely used packages such as dplyr [234] and
tidyr [230] are highly recommended reading. In particular, his paper on tidy data [218]
builds upon notions of normal forms—common to database designers from computer science—
to describe a process of thinking about how data should be stored and formatted. Finzer [77]
writes of a “data habit of mind” that needs to be inculcated among data scientists. The
RStudio data wrangling cheat sheet is a useful reference.

Sean Lahman, a self-described “database journalist,” has long curated his baseball data
set, which feeds the popular website baseball-reference.com. Michael Friendly maintains the
Lahman R package [80]. For the baseball enthusiast, Cleveland Indians analyst Max Marchi
and Jim Albert have written an excellent book on analyzing baseball data in R [140]. Albert
has also written a book describing how baseball can be used as a motivating example for
teaching statistics [2].

4.6 Exercises

Exercise 4.1

Each of these tasks can be performed using a single data verb. For each task, say which
verb it is:

1. Find the average of one of the variables.

2. Add a new column that is the ratio between two variables.

3. Sort the cases in descending order of a variable.

4.6. EXERCISES 89

4. Create a new data table that includes only those cases that meet a criterion.

5. From a data table with three categorical variables A, B, and C, and a quantitative
variable X, produce a data frame that has the same cases but only the variables A
and X.

Exercise 4.2

Use the nycflights13 package and the flights data frame to answer the following
questions: What month had the highest proportion of cancelled flights? What month had
the lowest? Interpret any seasonal patterns.

Exercise 4.3

Use the nycflights13 package and the flights data frame to answer the following
question: What plane (specified by the tailnum variable) traveled the most times from
New York City airports in 2013? Plot the number of trips per week over the year.

Exercise 4.4

Use the nycflights13 package and the flights and planes tables to answer the fol-
lowing questions: What is the oldest plane (specified by the tailnum variable) that flew
from New York City airports in 2013? How many airplanes that flew from New York City
are included in the planes table?

Exercise 4.5

Use the nycflights13 package and the flights and planes tables to answer the fol-
lowing questions: How many planes have a missing date of manufacture? What are the five
most common manufacturers? Has the distribution of manufacturer changed over time as
reflected by the airplanes flying from NYC in 2013? (Hint: you may need to recode the
manufacturer name and collapse rare vendors into a category called Other.)

Exercise 4.6

Use the nycflights13 package and the weather table to answer the following questions:
What is the distribution of temperature in July, 2013? Identify any important outliers in
terms of the wind speed variable. What is the relationship between dewp and humid? What
is the relationship between precip and visib?

Exercise 4.7

Use the nycflights13 package and the weather table to answer the following questions:
On how many days was there precipitation in the New York area in 2013? Were there
di↵erences in the mean visibility (visib) based on the day of the week and/or month of
the year?

Exercise 4.8

Define two new variables in the Teams data frame from the Lahman package: batting
average (BA) and slugging percentage (SLG). Batting average is the ratio of hits (H) to
at-bats (AB), and slugging percentage is total bases divided by at-bats. To compute total
bases, you get 1 for a single, 2 for a double, 3 for a triple, and 4 for a home run.

Exercise 4.9

90 CHAPTER 4. DATA WRANGLING

Plot a time series of SLG since 1954 conditioned by lgID. Is slugging percentage typically
higher in the American League (AL) or the National League (NL)? Can you think of why
this might be the case?

Exercise 4.10

Display the top 15 teams ranked in terms of slugging percentage in MLB history. Repeat
this using teams since 1969.

Exercise 4.11

The Angels have at times been called the California Angels (CAL), the Anaheim Angels
(ANA), and the Los Angeles Angels of Anaheim (LAA). Find the 10 most successful seasons
in Angels history. Have they ever won the World Series?

Exercise 4.12

Create a factor called election that divides the yearID into four-year blocks that
correspond to U.S. presidential terms. During which term have the most home runs been
hit?

Exercise 4.13

Name every player in baseball history who has accumulated at least 300 home runs (HR)
and at least 300 stolen bases (SB).

Exercise 4.14

Name every pitcher in baseball history who has accumulated at least 300 wins (W) and
at least 3,000 strikeouts (SO).

Exercise 4.15

Identify the name and year of every player who has hit at least 50 home runs in a single
season. Which player had the lowest batting average in that season?

Exercise 4.16

The Relative Age E↵ect is an attempt to explain anomalies in the distribution of birth
month among athletes. Briefly, the idea is that children born just after the age cut-o↵ for
participation will be as much as 11 months older than their fellow athletes, which is enough
of a disparity to give them an advantage. That advantage will then be compounded over
the years, resulting in notably more professional athletes born in these months. Display the
distribution of birth months of baseball players who batted during the decade of the 2000s.
How are they distributed over the calendar year? Does this support the notion of a relative
age e↵ect?

Exercise 4.17

The Violations data set in the mdsr package contains information regarding the out-
come of health inspections of restaurants in New York City. Use these data to calculate the
median violation score by zip code for zip codes in Manhattan with 50 or more inspections.
What pattern do you see between the number of inspections and the median score?

Exercise 4.18

Download data on the number of deaths by firearm from the Florida Department of Law
Enforcement. Wrangle these data and use ggplot2 to re-create Figure 6.1.

	Preface
	List of Tables
	List of Figures
	I Introduction to Data Science
	Prologue: Why data science?
	What is data science?
	Case study: The evolution of sabermetrics
	Datasets
	Further resources

	Data visualization
	The 2012 federal election cycle
	Are these two groups different?
	Graphing variation
	Examining relationships among variables
	Networks

	Composing data graphics
	A taxonomy for data graphics
	Color
	Dissecting data graphics

	Importance of data graphics: Challenger
	Creating effective presentations
	The wider world of data visualization
	Further resources
	Exercises

	A grammar for graphics
	A grammar for data graphics
	Aesthetics
	Scale
	Guides
	Facets
	Layers

	Canonical data graphics in R
	Univariate displays
	Multivariate displays
	Maps
	Networks

	Extended example: Historical baby names
	Percentage of people alive today
	Most common women's names

	Further resources
	Exercises

	Data wrangling
	A grammar for data wrangling
	select() and filter()
	mutate() and rename()
	arrange()
	summarize() with group_by()

	Extended example: Ben's time with the Mets
	Combining multiple tables
	inner_join()
	left_join()

	Extended example: Manny Ramirez
	Further resources
	Exercises

	Tidy data and iteration
	Tidy data
	Motivation
	What are tidy data?

	Reshaping data
	Data verbs for converting wide to narrow and vice versa
	Spreading
	Gathering
	Example: Gender-neutral names

	Naming conventions
	Automation and iteration
	Vectorized operations
	The apply() family of functions
	Iteration over subgroups with dplyr::do()
	Iteration with mosaic::do

	Data intake
	Data-table friendly formats
	APIs
	Cleaning data
	Example: Japanese nuclear reactors

	Further resources
	Exercises

	Professional Ethics
	Introduction
	Truthful falsehoods
	Some settings for professional ethics
	The chief executive officer
	Employment discrimination
	Data scraping
	Reproducible spreadsheet analysis
	Drug dangers
	Legal negotiations

	Some principles to guide ethical action
	Applying the precepts

	Data and disclosure
	Reidentification and disclosure avoidance
	Safe data storage
	Data scraping and terms of use

	Reproducibility
	Example: Erroneous data merging

	Professional guidelines for ethical conduct
	Ethics, collectively
	Further resources
	Exercises

	II Statistics and Modeling
	Statistical foundations
	Samples and populations
	Sample statistics
	The bootstrap
	Outliers
	Statistical models: Explaining variation
	Confounding and accounting for other factors
	The perils of p-values
	Further resources
	Exercises

	Statistical learning and predictive analytics
	Supervised learning
	Classifiers
	Decision trees
	Example: High-earners in the 1994 United States Census
	Tuning parameters
	Random forests
	Nearest neighbor
	Naïve Bayes
	Artificial neural networks

	Ensemble methods
	Evaluating models
	Cross-validation
	Measuring prediction error
	Confusion matrix
	ROC curves
	Bias-variance trade-off
	Example: Evaluation of income models

	Extended example: Who has diabetes?
	Regularization
	Further resources
	Exercises

	Unsupervised learning
	Clustering
	Hierarchical clustering
	k-means

	Dimension reduction
	Intuitive approaches
	Singular value decomposition

	Further resources
	Exercises

	Simulation
	Reasoning in reverse
	Extended example: Grouping cancers
	Randomizing functions
	Simulating variability
	The partially planned rendezvous
	The jobs report
	Restaurant health and sanitation grades

	Simulating a complex system
	Random networks
	Key principles of simulation
	Further resources
	Exercises

	III Topics in Data Science
	Interactive data graphics
	Rich Web content using D3.js and htmlwidgets
	Leaflet
	Plot.ly
	DataTables
	dygraphs
	streamgraphs

	Dynamic visualization using ggvis
	Interactive Web apps with Shiny
	Further customization
	Extended example: Hot dog eating
	Further resources
	Exercises

	Database querying using SQL
	From dplyr to SQL
	Flat-file databases
	The SQL universe
	The SQL data manipulation language
	SELECT...FROM
	WHERE
	GROUP BY
	ORDER BY
	HAVING
	LIMIT
	JOIN
	UNION
	Subqueries

	Extended example: FiveThirtyEight flights
	SQL vs. R
	Further resources
	Exercises

	Database administration
	Constructing efficient SQL databases
	Creating new databases
	CREATE TABLE
	Keys
	Indices
	EXPLAIN
	Partitioning

	Changing SQL data
	UPDATE
	INSERT
	LOAD DATA

	Extended example: Building a database
	Extract
	Transform
	Load into MySQL database

	Scalability
	Further resources
	Exercises

	Working with spatial data
	Motivation: What's so great about spatial data?
	Spatial data structures
	Making maps
	Static maps with ggmap
	Projections
	Geocoding, routes, and distances
	Dynamic maps with leaflet

	Extended example: Congressional districts
	Election results
	Congressional districts
	Putting it all together
	Using ggmap
	Using leaflet

	Effective maps: How (not) to lie
	Extended example: Historical airline route maps
	Using ggmap
	Using leaflet

	Projecting polygons
	Playing well with others
	Further resources
	Exercises

	Text as data
	Tools for working with text
	Regular expressions using Macbeth
	Example: Life and death in Macbeth

	Analyzing textual data
	Corpora
	Word clouds
	Document term matrices

	Ingesting text
	Example: Scraping the songs of the Beatles
	Scraping data from Twitter

	Further resources
	Exercises

	Network science
	Introduction to network science
	Definitions
	A brief history of network science

	Extended example: Six degrees of Kristen Stewart
	Collecting Hollywood data
	Building the Hollywood network
	Building a Kristen Stewart oracle

	PageRank
	Extended example: 1996 men's college basketball
	Further resources
	Exercises

	Epilogue: Towards ``big data"
	Notions of big data
	Tools for bigger data
	Data and memory structures for big data
	Compilation
	Parallel and distributed computing
	Alternatives to SQL

	Alternatives to R
	Closing thoughts
	Further resources

	IV Appendices
	Packages used in this book
	The mdsr package
	The etl package suite
	Other packages
	Further resources

	Introduction to R and RStudio
	Installation
	Installation under Windows
	Installation under Mac OS X
	Installation under Linux
	RStudio

	Running RStudio and sample session
	Learning R
	Getting help
	swirl

	Fundamental structures and objects
	Objects and vectors
	Operators
	Lists
	Matrices
	Dataframes
	Attributes and classes
	Options
	Functions

	Add-ons: Packages
	Introduction to packages
	CRAN task views
	Session information
	Packages and name conflicts
	Maintaining packages
	Installed libraries and packages

	Further resources
	Exercises

	Algorithmic thinking
	Introduction
	Simple example
	Extended example: Law of large numbers
	Non-standard evaluation
	Debugging and defensive coding
	Further resources
	Exercises

	Reproducible analysis and workflow
	Scriptable statistical computing
	Reproducible analysis with R Markdown
	Projects and version control
	Further resources
	Exercises

	Regression modeling
	Simple linear regression
	Motivating example: Modeling usage of a rail trail
	Model visualization
	Measuring the strength of fit
	Categorical explanatory variables

	Multiple regression
	Parallel slopes: Multiple regression with a categoricalvariable
	Parallel planes: Multiple regression with a secondquantitative variable
	Non-parallel slopes: Multiple regression with interaction
	Modelling non-linear relationships

	Inference for regression
	Assumptions underlying regression
	Logistic regression
	Further resources
	Exercises

	Setting up a database server
	SQLite
	MySQL
	Installation
	Access
	Running scripts from the command line

	PostgreSQL
	Connecting to SQL
	The command line client
	GUIs
	R and RStudio
	Load into SQLite database

	Bibliography
	Indices
	Subject index
	R index

